「BZOJ2957」楼房重建
Description
小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?
Input
第一行两个正整数N,M
接下来M行,每行两个正整数Xi,Yi
Output
M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋
Sample Input
3 4
2 4
3 6
1 1000000000
1 1
2 4
3 6
1 1000000000
1 1
Sample Output
1
1
1
2
数据约定
对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
1
1
2
数据约定
对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
题解
huzecong:
一个显而易见的结论是,这种数字的值是单调递增的。我们修改一个数只会对这个数后面的数造成影响。考虑线段树划分出来的若干线段。这里有两种情况:1、某个线段中的最大值小于等于修改的数,那么这个线段的贡献为0,无需处理
2、否则我们将这个线段分成两个并单独考虑,如果左侧的最大值大于修改的数,那么是不影响右侧的贡献的,只需递归处理左侧;否则就变成了第一种情况
那么我们就可以用线段树来解决这个问题了……复杂度好像是O(Nlog^2N)?但是常数巨小无比,而且非常好写……
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
#include<set> #include<map> #include<ctime> #include<queue> #include<cmath> #include<cstdio> #include<vector> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define inf 1000000000 #define ll long long using namespace std; int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n,m; struct data{ int l,r,ans; double val,lx,mx; }t[400005]; void build(int k,int l,int r) { t[k].l=l;t[k].r=r;int mid=(l+r)>>1; if(l==r)return; build(k<<1,l,mid); build(k<<1|1,mid+1,r); } int cal(int k,double val) { int l=t[k].l,r=t[k].r; if(l==r)return t[k].val>val; if(t[k<<1].val<=val)return cal(k<<1|1,val); return t[k].ans-t[k<<1].ans+cal(k<<1,val); } void modify(int k,int pos,double val) { int l=t[k].l,r=t[k].r,mid=(l+r)>>1; if(l==r) { t[k].ans=1; t[k].val=val; return; } if(pos<=mid)modify(k<<1,pos,val); else modify(k<<1|1,pos,val); t[k].val=max(t[k<<1].val,t[k<<1|1].val); t[k].ans=t[k<<1].ans+cal(k<<1|1,t[k<<1].val); } int main() { n=read();m=read(); build(1,1,n); while(m--) { int x=read(),y=read(); modify(1,x,(double)y/x); printf("%d\n",t[1].ans); } return 0; } |
黄学长,huzecong是谁啊
请问黄学长,您这里的lx和mx维护的是什么?