NOIP2013货车运输

2014年4月9日5,92714

题目描述 Description

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入描述 Input Description

第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。

输出描述 Output Description

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。

样例输入 Sample Input

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3

样例输出 Sample Output

3
-1
3

数据范围及提示 Data Size & Hint

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000;
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000;
对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000,0 ≤ z ≤ 100,000。

 题解

这是一个求瓶颈路的问题首先对于30%的数据可以使用暴力,直接一个spfa算法,不断更新到每个结点的瓶颈路这是一个经典的问题,我们发现,最优解一定是在原图的最大生成森林上

因为不在最大生成森林上的路径一定是更劣的

那么如果我们只拿出最大生成森林做spfa的话,边的大小降为n,可以通过60%的数据

其实本题是模板题,询问森林中两个点的路径上的最小边权,连通性用并查集判一下

可以用树上倍增在logn的复杂度解决一棵树内的一次询问

预处理F(i,j)表示第i个点距离为2^j的祖先,这个可以深搜整棵树再递推一下,复杂度nlogn

G(i,j)表示第i个点到其距离为2^j的祖先上的最小权值,然后用倍增的思想俩个点往上跳一跳更新答案就行辣

30分 spfa

60分 最大生成树+spfa

2014.4.9:TAT我以前写最大生成树还写spfa干嘛。。。