「BZOJ3813」奇数国

2015年1月22日5,8140

Description

在一片美丽的大陆上有100000个国家,记为1到100000。这里经济发达,有数不尽的账房,并且每个国家有一个银行。某大公司的领袖在这100000个银行开户时都存了3大洋,他惜财如命,因此会不时地派小弟GFS清点一些银行的存款或者让GFS改变某个银行的存款。该村子在财产上的求和运算等同于我们的乘法运算,也就是说领袖开户时的存款总和为3100000。这里发行的软妹面额是最小的60个素数(p1=2,p2=3,…,p60=281),任何人的财产都只能由这60个基本面额表示,即设某个人的财产为fortune(正整数),则fortune=p1^k1*p2^k2*……p60^K60。
领袖习惯将一段编号连续的银行里的存款拿到一个账房去清点,为了避免GFS串通账房叛变,所以他不会每次都选择同一个账房。GFS跟随领袖多年已经摸清了门路,知道领袖选择账房的方式。如果领袖选择清点编号在[a,b]内的银行财产,他会先对[a,b]的财产求和(计为product),然后在编号属于[1,product]的账房中选择一个去清点存款,检验自己计算是否正确同时也检验账房与GFS是否有勾结。GFS发现如果某个账房的编号number与product相冲,领袖绝对不会选择这个账房。怎样才算与product不相冲呢?若存在整数x,y使得number*x+product*y=1,那么我们称number与product不相冲,即该账房有可能被领袖相中。当领袖又赚大钱了的时候,他会在某个银行改变存款,这样一来相同区间的银行在不同的时候算出来的product可能是不一样的,而且领袖不会在某个银行的存款总数超过1000000。
现在GFS预先知道了领袖的清点存款与变动存款的计划,想请你告诉他,每次清点存款时领袖有多少个账房可以供他选择,当然这个值可能非常大,GFS只想知道对19961993取模后的答案。

Input

第一行一个整数x表示领袖清点和变动存款的总次数。
接下来x行,每行3个整数ai,bi,ci。ai为0时表示该条记录是清点计划,领袖会清点bi到ci的银行存款,你需要对该条记录计算出GFS想要的答案。ai为1时表示该条记录是存款变动,你要把银行bi的存款改为ci,不需要对该记录进行计算。

Output

输出若干行,每行一个数,表示那些年的答案。

Sample Input

6
013
115
013
117
013
023

Sample Output

18
24
36
6

explanation

初始化每个国家存款都为3;

1到3的product为27,[1,27]与27不相冲的有18个数;
1的存款变为5;
1到3的product为45,[1,45]与45不相冲的有24个数;
1的存款变为7;
1到3的product为63,[1,63]与63不相冲的有36个数;
2到3的product为9,[1,9]与9不相冲的有6个数。

HINT

x≤100000,当ai=0时0≤ci−bi≤100000

题解

求区间乘积的欧拉函数取模

√n求欧拉函数的方法

用两棵线段树,一棵维护乘积,一棵维护质因数(压成一个long long)

预处理乘法逆元和素数

 

avatar
  Subscribe  
提醒