NOIP2004合并果子

2013年11月8日6,0950

题目描述

        在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。          每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。          因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。          例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入

        输入文件fruit.in包括两行,第一行是一个整数n(1< =n< =10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1< =ai< =20000)是第i种果子的数目。

输出

        输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

样例输入

3 1 2 9

样例输出

15

提示

 

对于30%的数据,保证有n< =1000:  对于50%的数据,保证有n< =5000;  对于全部的数据,保证有n< =10000。

 

代码

小根堆

 

 

avatar
  Subscribe  
提醒