NOIP2002均分纸牌

2013年11月7日3,9970

题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入

第一行为一个整数N(N 堆纸牌,1 <= N <= 100)
第二行有N个整数A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出

所有堆均达到相等时的最少移动次数。

样例输入

4 9 8 17 6

样例输出

3

代码

 

 

 

 

avatar
  Subscribe  
提醒