【bzoj2165】大楼

2014年12月9日2,0923

Description

xz是一个旅游爱好者,这次他来到了一座新的城市。城市中央有一幢高耸入云的大楼。这幢楼到底有多少层呢?据说和非负整数的个数是一样多的。xz想爬上这座大楼来观赏新城市的全景。这幢大楼的楼层从下至上用从小到大的非负整数编号。每层楼有n个房间,用1到n的正整数编号。楼层之间用电梯连接,电梯只能上行,不能下行或者同层移动。(下楼一般自行解决)电梯用(u,v,w)的形式给出,表示对于任意正整数i,有第i层的房间u到第i+w层的房间v有一部电梯。电梯只能从起点开往终点,不能中途停留。 xz想要观赏城市全景,至少需要登上第m层楼,即最终需要到达的楼层数≥m。由于乘坐电梯要缴纳高额的费用,而如果花销太大回家就没法报账了,xz希望乘坐电梯的次数最少。现在xz在第0层的1号房间,你需要求出这个最少的乘坐次数。

Input

第一行包含一个正整数T,表示数据的组数。接下来的数据分为T个部分。每个部分第一行包含两个正整数n和m,意义见题目描述。接下来n行,每行包含n个非负整数。这n行中,第i行第j个数为Wi,j,如果wi,j非零,则表示有电梯(i,j,Wi,j)。同一行各个数之间均用一个空格隔开。

Output

对于每组数据,输出一行一个正整数,最少的乘坐次数。

Sample Input

2
6 147
0 1 0 50 0 0
0 0 1 0 0 0
20 0 0 0 0 0
0 0 0 0 1 50
0 0 0 8 0 0
0 0 0 0 0 3
6 152
0 1 0 50 0 0
0 0 1 0 0 0
20 0 0 0 0 0
0 0 0 0 1 50
0 0 0 8 0 0
0 0 0 0 0 3

Sample Output

9
10
【样例说明】
第一组数据中,使用电梯的顺序为1→2→3→1→2→3→1→4→6→6;第二组数据中,使用电梯的顺序为1→2→3→1→2→3→1→4→5→4→6。第二组数据最后到达了153层,但是没有更短的路径使得恰好到达152层,因此答案为10。

HINT

有如下几类具有特点的数据: 1、有10%的数据所有的n=2; 2、有20%的数据m≤3000; 3、有20%的数据对于满足1≤i,j≤n的整数i和j,若wi,j≠0,则有wi,j≥1015; 4、有30%的数据所有的n=40。以上各类数据均不包含其他类数据。对于所有数据T=5,1≤n≤100,1≤m≤1018;对于满足1≤i,j≤n的整数i和j,有0≤wi,j≤1018。数据保证能够到达m层或更高的楼层。

题解

f[i][j][p]表示从i到j坐了p次电梯的最大上升高度

f[i][j][p]=max{f[i][k][p/2]+f[k][j][p/2]}

这样就能用矩阵从f1=w得出f2,f4,f8…

直到第一行出现>=m的数停止

问题转化为求fp,p->max,使得第一行都小于m,用二进制拆分的思想从大到小累加

某神犇提出了初始矩阵的设置问题

可以把初始矩阵改成对角线0,其余-INF TAT

 

  • 吴桐2015年12月12日 下午12:38 回复

    表示没有看懂,能解释一下吗??

    #1  
    • hzwer2015年12月12日 下午2:11 回复
      admin

      转移方程类似矩阵乘法,答案可通过倍增来求

      #11
  • - 慕°2017年2月28日 下午8:13 回复

    妙啊 太妙了orz

    #2