「BZOJ1670」[Usaco2006 Oct] Building the Moat护城河的挖掘
Description
为了防止口渴的食蚁兽进入他的农场,Farmer John决定在他的农场周围挖一条护城河。农场里一共有N(8<=N<=5,000)股泉水,并且,护城河总是笔直地连接在河道上的相邻的两股泉水。护城河必须能保护所有的泉水,也就是说,能包围所有的泉水。泉水一定在护城河的内部,或者恰好在河道上。当然,护城河构成一个封闭的环。 挖护城河是一项昂贵的工程,于是,节约的FJ希望护城河的总长度尽量小。请你写个程序计算一下,在满足需求的条件下,护城河的总长最小是多少。 所有泉水的坐标都在范围为(1..10,000,000,1..10,000,000)的整点上,一股泉水对应着一个唯一确定的坐标。并且,任意三股泉水都不在一条直线上。 以下是一幅包含20股泉水的地图,泉水用”*”表示
图中的直线,为护城河的最优挖掘方案,即能围住所有泉水的最短路线。 路线从左上角起,经过泉水的坐标依次是:(18,0),(6,-6),(0,-5),(-3,-3),(-17,0),(-7,7),(0,4),(3,3)。绕行一周的路径总长为70.8700576850888(…)。答案只需要保留两位小数,于是输出是70.87。
Input
* 第1行: 一个整数,N * 第2..N+1行: 每行包含2个用空格隔开的整数,x[i]和y[i],即第i股泉水的位 置坐标
Output
* 第1行: 输出一个数字,表示满足条件的护城河的最短长度。保留两位小数
Sample Input
20
2 10
3 7
22 15
12 11
20 3
28 9
1 12
9 3
14 14
25 6
8 1
25 1
28 4
24 12
4 15
13 5
26 5
21 11
24 4
1 8
2 10
3 7
22 15
12 11
20 3
28 9
1 12
9 3
14 14
25 6
8 1
25 1
28 4
24 12
4 15
13 5
26 5
21 11
24 4
1 8
Sample Output
70.87
题解
裸凸包
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> #include<set> #include<queue> #include<map> #define inf 1000000000 #define ll long long using namespace std; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n,top; double ans; struct P{int x,y;}p[5005],s[5005]; inline P operator-(P a,P b) { P t;t.x=a.x-b.x;t.y=a.y-b.y;return t; } inline ll operator*(P a,P b) { return a.x*b.y-a.y*b.x; } inline ll dis(P a,P b) { return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } inline bool operator<(P a,P b) { ll t=(a-p[1])*(b-p[1]); if(t==0)return dis(p[1],a)<dis(p[1],b); return t>0; } void graham() { int t=1; for(int i=2;i<=n;i++) if(p[i].y<p[t].y||(p[i].y==p[t].y&&p[i].x<p[t].x))t=i; swap(p[1],p[t]); sort(p+2,p+n+1); s[++top]=p[1];s[++top]=p[2]; for(int i=3;i<=n;i++) { while((s[top]-s[top-1])*(p[i]-s[top-1])<=0)top--; s[++top]=p[i]; } s[top+1]=p[1]; for(int i=1;i<=top;i++) ans+=sqrt(dis(s[i],s[i+1])); } int main() { n=read(); for(int i=1;i<=n;i++) p[i].x=read(),p[i].y=read(); graham(); printf("%.2lf\n",ans); return 0; } |
Subscribe