「BZOJ1101」[POI2007] Zap
Description
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
Input
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)
Output
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。
Sample Input
2
4 5 2
6 4 3
4 5 2
6 4 3
Sample Output
3
2
2
HINT
对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。
题解
复制鏼爷的题解
推导:
令
用莫比乌斯函数的性质把求和的式子换掉,
其中,更换求和指标,
容易知道单调不上升,且最多有种不同的取值。所以按取值分成个段分别处理,一个连续段内的和可以用预处理出的莫比乌斯函数前缀和求出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<set> #include<ctime> #include<vector> #include<cmath> #include<algorithm> #include<map> #define ll long long using namespace std; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int tot; int mu[50005],sum[50005],pri[50005]; bool mark[50005]; void get() { mu[1]=1; for(int i=2;i<=50000;i++) { if(!mark[i])pri[++tot]=i,mu[i]=-1; for(int j=1;j<=tot&&i*pri[j]<=50000;j++) { mark[i*pri[j]]=1; if(i%pri[j]==0){mu[i*pri[j]]=0;break;} else mu[i*pri[j]]=-mu[i]; } } for(int i=1;i<=50000;i++) sum[i]=sum[i-1]+mu[i]; } int cal(int n,int m) { if(n>m)swap(n,m); int ans=0,pos; for(int i=1;i<=n;i=pos+1) { pos=min(n/(n/i),m/(m/i)); ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i); } return ans; } int main() { get(); int T=read(); while(T--) { int a=read(),b=read(),d=read(); printf("%d\n",cal(a/d,b/d)); } return 0; } |
[…] Orz hzwer && Jcvb,2333 […]
大佬Orz
Orz