「BZOJ2005」[Noi2010] 能量采集
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
5 4
「样例输入2」
3 4
Sample Output
36
「样例输出2」
20
「数据规模和约定」
对于10%的数据:1 ≤ n, m ≤ 10;
对于50%的数据:1 ≤ n, m ≤ 100;
对于80%的数据:1 ≤ n, m ≤ 1000;
对于90%的数据:1 ≤ n, m ≤ 10,000;
对于100%的数据:1 ≤ n, m ≤ 100,000。
题解
wulala:可以证明点(x,y)与(0,0)所连线段上不包含原点有的点为gcd(x,y)
于是问题就变成了求gcd(x,y)(1 <= x <= n,1 <= y <= m)的和;
可以设f[i]表示gcd为i的点对数有多少
首先公因数里面有i的点对数显然是(n / i) * ( m / i)
然后再减去f[i的倍数]就得到了f[i]
然后ans就很好求了
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
#include<iostream> #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #define inf 0x7fffffff #define ll long long using namespace std; inline ll read() { ll x=0,f=1;char ch=getchar(); while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } ll n,m; ll ans,f[100005]; int main() { n=read();m=read(); if(n<m)swap(n,m); for(ll i=n;i;i--) { f[i]=(n/i)*(m/i); for(ll j=2*i;j<=n;j+=i) f[i]-=f[j]; ans+=f[i]*(2*i-1); } printf("%lld",ans); return 0; } |