「BZOJ1196」[HNOI2006] 公路修建问题
Description
OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。 OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。 OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率, OIER Association希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIER Association也不希望为一条公路花费的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。
Input
第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。 N和k如前所述,m表示有m对景点之间可以修公路。以下的m-1行,每一行有4个正整数a,b,c1,c2 (1≤a,b≤n,a≠b,1≤c2≤c1≤30000)表示在景点a与b 之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。
Output
一个数据,表示花费最大的公路的花费。
Sample Input
3 9 6 3
1 3 4 1
5 3 10 2
8 9 8 7
6 8 8 3
7 1 3 2
4 9 9 5
10 8 9 1
2 6 9 1
6 7 9 8
2 6 2 1
3 8 9 5
3 2 9 6
1 6 10 3
5 6 3 1
2 7 6 1
7 8 6 2
10 9 2 1
7 1 10 2
Sample Output
题解
二分+判断。。。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; inline int read() { int x=0;char ch=getchar(); while(ch<'0'||ch>'9')ch=getchar(); while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x; } int n,K,m,ans; int fa[10005]; struct data{int x,y,c1,c2;}e[20005]; int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);} bool jud(int x) { for(int i=1;i<=n;i++)fa[i]=i; int cnt=0; for(int i=1;i<=m;i++) { if(e[i].c1>x)continue; int p=find(e[i].x),q=find(e[i].y); if(p!=q) {fa[p]=q;cnt++;} } if(cnt<K)return 0; for(int i=1;i<=m;i++) { if(e[i].c2>x)continue; int p=find(e[i].x),q=find(e[i].y); if(p!=q) {fa[p]=q;cnt++;} } if(cnt!=n-1)return 0; return 1; } int main() { n=read(),K=read(),m=read(); for(int i=1;i<m;i++) e[i].x=read(),e[i].y=read(),e[i].c1=read(),e[i].c2=read(); int l=1,r=30000; while(l<=r) { int mid=(l+r)>>1; if(jud(mid)){ans=mid;r=mid-1;} else {l=mid+1;} } printf("%d",ans); return 0; } |